Cellular mechanisms of differential action potential duration restitution in canine ventricular muscle cells during single versus double premature stimuli.
نویسندگان
چکیده
BACKGROUND We tested the hypothesis that action potential duration (APD) restitution of normal ventricular muscle cells is different during double premature stimuli (S3) compared with a single premature stimulus (S2). We propose a possible ionic mechanism for such a difference. METHODS AND RESULTS Action potentials and isometric tension were recorded simultaneously from isolated canine right ventricular trabeculae (2 x 2 x 10 mm) (n = 35). APD and tension restitution curves (APD) and peak tension versus diastolic interval [DI] of S2 and S3 were constructed by the extrastimulus method during pacing at 1,500 msec. The following results were obtained. 1) The APD restitution curve of S2 was different from that of S3. During the restitution of S2, an early biphasic upward hump was present at short DIs. In contrast, a smooth exponential rise was consistently seen during S3 restitution. 2) Peak tension remained significantly (p less than 0.001) lower during the restitution of S2 than during S3 restitution at all DIs tested. 3) The variation of APD during the initial 100 msec of DI was significantly longer during S3 than S2 (22 +/- 5 msec versus 41 +/- 5 msec, p less than 0.001). 4) Caffeine (2 mM, n = 5) and ryanodine (10 microM, n = 5) blocked cyclic variations of tension, presumably by blocking cyclic variations of intracellular calcium ion concentrations ([Ca2+]i), and eliminated the differences in APD restitution between S2 and S3. 5) Nisoldipine at high (5 microM) but not at lower (2 microM, n = 5) concentration eliminated the differences in restitution of both APD and tension between S2 and S3. 6) BAY K 8644 (100 nM, n = 5) had no effect on this difference. CONCLUSIONS Greater variations of APD occur during the restitution of S3 than during S2 at short DIs. These differences appear to be caused by cyclic variations in tension and thus in [Ca2+]i. Calcium-sensitive outward currents could explain these differences in APD restitution.
منابع مشابه
Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation.
The restitution kinetics of action potential duration (APD) were investigated in paced canine Purkinje fibers (P; n = 9) and endocardial muscle (M; n = 9), in isolated, perfused canine left ventricles during ventricular fibrillation (VF; n = 4), and in endocardial muscle paced at VF cycle lengths (simulated VF; n = 4). Restitution was assessed with the use of two protocols: delivery of a single...
متن کاملCardiac electrical dynamics: maximizing dynamical heterogeneity.
The relationships between key features of the cardiac electrical activity, such as electrical restitution, discordant alternans, wavebreak, and reentry, and the onset of ventricular tachyarrhythmias have been characterized extensively under the condition of constant rapid pacing. However, it is unlikely that this scenario applies directly to the clinical situation, where the induction of ventri...
متن کاملDynamic mechanism for initiation of ventricular fibrillation in vivo.
BACKGROUND Dynamically induced heterogeneities of repolarization may lead to wave-front destabilizations and initiation of ventricular fibrillation (VF). In a computer modeling study, we demonstrated that specific sequences of premature stimuli maximized dynamically induced spatial dispersion of refractoriness and predisposed the heart to the development of conduction block. The purpose of this...
متن کاملThe effects of single premature stimuli on automatic and triggered rhythms in isolated canine Purkinje fibers KENNETH
We studied the effects of single premature stimuli on automatic and triggered rhythms occurring in preparations of isolated canine Purkinje fibers. Preparations were made from false tendons, the subendocardial right bundle branch, and infarct zone Purkinje fibers 24 hr after occlusion of the left anterior descending coronary artery, and were studied by standard microelectrode techniques. Single...
متن کاملInfluence of thyroid state on mechanical restitution of rat myocardium.
The purpose of this study was to determine whether thyroid state affects the beat-to-beat regulation of contractile strength in cardiac muscle. Transmembrane action potential and isometric force were simultaneously recorded in right ventricular papillary muscles from euthyroid, hypothyroid, and hyperthyroid rats. Large thyroid state-dependent alterations in the contractile response of the muscl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 86 3 شماره
صفحات -
تاریخ انتشار 1992